Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(28): e2301115120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399418

RESUMO

Enteric bacterial pathogens pose significant threats to human health; however, the mechanisms by which they infect the mammalian gut in the face of daunting host defenses and an established microbiota remain poorly defined. For the attaching and effacing (A/E) bacterial family member and murine pathogen Citrobacter rodentium, its virulence strategy likely involves metabolic adaptation to the host's intestinal luminal environment, as a necessary precursor to reach and infect the mucosal surface. Suspecting this adaptation involved the intestinal mucus layer, we found that C. rodentium was able to catabolize sialic acid, a monosaccharide derived from mucins, and utilize it as its sole carbon source for growth. Moreover, C. rodentium also sensed and displayed chemotactic activity toward sialic acid. These activities were abolished when the nanT gene, encoding a sialic acid transporter, was deleted (ΔnanT). Correspondingly, the ΔnanT C. rodentium strain was significantly impaired in its ability to colonize the murine intestine. Intriguingly, sialic acid was also found to induce the secretion of two autotransporter proteins, Pic and EspC, which possess mucinolytic and host-adherent properties. As a result, sialic acid enhanced the ability of C. rodentium to degrade intestinal mucus (through Pic), as well as to adhere to intestinal epithelial cells (through EspC). We thus demonstrate that sialic acid, a monosaccharide constituent of the intestinal mucus layer, functions as an important nutrient and a key signal for an A/E bacterial pathogen to escape the colonic lumen and directly infect its host's intestinal mucosa.


Assuntos
Citrobacter rodentium , Infecções por Enterobacteriaceae , Animais , Camundongos , Bactérias , Citrobacter , Infecções por Enterobacteriaceae/microbiologia , Mucosa Intestinal/microbiologia , Mamíferos , Monossacarídeos , Ácido N-Acetilneuramínico
2.
Gut Microbes ; 12(1): 1802209, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32991816

RESUMO

The colonic mucus layer, comprised of highly O-glycosylated mucins, is vital to mediating host-gut microbiota interactions, yet the impact of dietary changes on colonic mucin O-glycosylation and its associations with the gut microbiota remains unexplored. Here, we used an array of omics techniques including glycomics to examine the effect of dietary fiber consumption on the gut microbiota, colonic mucin O-glycosylation and host physiology of high-fat diet-fed C57BL/6J mice. The high-fat diet group had significantly impaired glucose tolerance and altered liver proteome, gut microbiota composition, and short-chain fatty acid production compared to normal chow diet group. While dietary fiber inclusion did not reverse all high fat-induced modifications, it resulted in specific changes, including an increase in the relative abundance of bacterial families with known fiber digesters and a higher propionate concentration. Conversely, colonic mucin O-glycosylation remained similar between the normal chow and high-fat diet groups, while dietary fiber intervention resulted in major alterations in O-glycosylation. Correlation network analysis revealed previously undescribed associations between specific bacteria and mucin glycan structures. For example, the relative abundance of the bacterium Parabacteroides distasonis positively correlated with glycan structures containing one terminal fucose and correlated negatively with glycans containing two terminal fucose residues or with both an N-acetylneuraminic acid and a sulfate residue. This is the first comprehensive report of the impact of dietary fiber on the colonic mucin O-glycosylation and associations of these mucosal glycans with specific gut bacteria.


Assuntos
Bactérias/isolamento & purificação , Colo/microbiologia , Fibras na Dieta/metabolismo , Microbioma Gastrointestinal , Mucinas/metabolismo , Ração Animal/análise , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Colo/metabolismo , Ácidos Graxos Voláteis/metabolismo , Glicosilação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucinas/química , Polissacarídeos/metabolismo
3.
Front Microbiol ; 9: 1618, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30072976

RESUMO

There is growing public interest in the use of fiber supplements as a way of increasing dietary fiber intake and potentially improving the gut microbiota composition and digestive health. However, currently there is limited research into the effects of commercially available fiber supplements on the gut microbiota. Here we used an in vitro human digestive and gut microbiota model system to investigate the effect of three commercial fiber products; NutriKane™, Benefiber® and Psyllium husk (Macro) on the adult gut microbiota. The 16S rRNA gene amplicon sequencing results showed dramatic fiber-dependent changes in the gut microbiota structure and composition. Specific bacterial OTUs within the families Bacteroidaceae, Porphyromonadaceae, Ruminococcaceae, Lachnospiraceae, and Bifidobacteriaceae showed an increase in the relative abundances in the presence of one or more fiber product(s), while Enterobacteriaceae and Pseudomonadaceae showed a reduction in the relative abundances upon addition of all fiber treatments compared to the no added fiber control. Fiber-specific increases in SCFA concentrations showed correlation with the relative abundance of potential SCFA-producing gut bacteria. The chemical composition, antioxidant potential and polyphenolic content profiles of each fiber product were determined and found to be highly variable. Observed product-specific variations could be linked to differences in the chemical composition of the fiber products. The general nature of the fiber-dependent impact was relatively consistent across the individuals, which may demonstrate the potential of the products to alter the gut microbiota in a similar, and predictable direction, despite variability in the starting composition of the individual gut microbiota.

4.
Sci Rep ; 7(1): 14312, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29085002

RESUMO

The introduction of different nutrient and energy sources during weaning leads to significant changes in the infant gut microbiota. We used an in vitro infant digestive and gut microbiota model system to investigate the effect of four commercially available cereal products based on either wheat, sorghum, rice or oats, on the gut microbiota of six infants. Our results indicated cereal additions induced numerous changes in the gut microbiota composition. The relative abundance of bacterial families associated with fibre degradation, Bacteroidaceae, Bifidobacteriaceae, Lactobacillaceae, Prevotellaceae, Ruminococcaceae and Veillonellaceae increased, whilst the abundance of Enterobacteriaceae decreased with cereal additions. Corresponding changes in the production of SCFAs showed higher concentrations of acetate following all cereal additions, whilst, propionate and butyrate varied between specific cereal additions. These cereal-specific variations in the concentrations of SCFAs showed a moderate correlation with the relative abundance of potential SCFA-producing bacterial families. Overall, our results demonstrated clear shifts in the abundance of bacterial groups associated with weaning and an increase in the production of SCFAs following cereal additions.


Assuntos
Avena/metabolismo , Bactérias/classificação , Microbioma Gastrointestinal/fisiologia , Oryza/metabolismo , Sorghum/metabolismo , Triticum/metabolismo , Bactérias/isolamento & purificação , Fibras na Dieta/metabolismo , Grão Comestível/metabolismo , Fezes/microbiologia , Feminino , Humanos , Lactente , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...